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We experimentally study the airflow in a collapsing cavity created by the impact
of a circular disc on a water surface. We measure the air velocity in the collapsing
neck in two ways: Directly, by means of employing particle image velocimetry of
smoke injected into the cavity and indirectly, by determining the time rate of change
of the volume of the cavity at pinch-off and deducing the air flow in the neck
under the assumption that the air is incompressible. We compare our experiments
to boundary integral simulations and show that close to the moment of pinch-off,
compressibility of the air starts to play a crucial role in the behavior of the cavity.
Finally, we measure how the air flow rate at pinch-off depends on the Froude number
and explain the observed dependence using a theoretical model of the cavity collapse.
C© 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4794125]

I. INTRODUCTION

The impact of a solid body on a water surface triggers a series of spectacular events: After a
splash, if the impact speed is high enough, a surface cavity is formed which pinches off such that a
bubble is entrained.1–3 Right after pinch-off two strong thin jets are formed,4 one shooting upwards
and one shooting downwards.

An aspect in the impact on liquids that has drawn very little attention is the influence of the
accompanying gas phase. When we take into account the inner gas in the detaching air bubble,
we find a singularity in the velocity of the inner gas. Assuming any finite flow rate for the gas, the
velocity of the gas will diverge because the area that the gas has to flow through goes to zero. Nature
has found a way to avoid a true singularity by letting compressibility limit the speed of the air, but
nonetheless the air plays an important role in the final shape of the cavity just before pinch-off,5, 6

and can even reach supersonic speeds.7

The main objective of this paper is to understand what determines the gas flow rate in the case
of an impacting disc and to obtain insight into the role of compressibility effects in the air. To
this end we apply two different approaches: First, we perform volume measurements to determine
the flow rate based on continuity, and second we measure the air flow directly by seeding the air
with smoke under laser sheet illumination. We compare and extend our experiments with numerical
simulations, where we use one- and two-phase boundary integral simulations, sometimes coupled
to compressible Euler equations,8 to determine the air flow, with and without taking the dynamics
of the gas phase into account. This paper builds partially on a previous publication by Gekle et al.7

where it was shown that the gas velocity reaches supersonic speeds and compressibility influences
the shape of the cavity in the neck region. Our new results show how the flow rate depends on the
disc size and impact speed, for which we derive a scaling law. We experimentally verify the position
of the stagnation point that was found numerically before7 and we determine at which moment
compressibility starts to play a role in the dynamics of the cavity collapse.
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FIG. 1. Two snapshots of an experiment in which a disc with a radius of 2 cm hits the water surface and moves down at a
constant speed of 1 m/s. A surface cavity is created that subsequently collapses under the influence of the hydrostatic pressure.
Eventually, the cavity pinches off at the depth indicated by the dashed line, and a large air bubble is entrained. The arrows
(red) indicate the direction of the air flow: On the left, volume is created, resulting in a downward air flow. On the right, the
bubble volume below the pinch-off depth is decreasing, and therefore air is pushed upwards.

We have structured this paper as follows: We first give a brief description of the experimental
setup in Sec. II. Section III explains the method of volume measurements, and the results are
combined with numerical simulations. More specifically, we measure how the air flow rate at pinch-
off depends on the Froude number and explain the observed dependence using a theoretical model
of the cavity collapse. In Sec. IV we perform a direct determination of the air flow velocity by
seeding the air with smoke and illuminating with a laser sheet. Subsequently, we compare the results
with the velocities that we determined using volume measurements. Finally, in Sec. V we discuss in
detail when and how compressibility becomes important.

II. EXPERIMENTAL SETUP

The experimental setup consists of a water tank with a bottom area of 50 cm by 50 cm and
100 cm in height. A linear motor that is located below the tank pulls a disc through the water surface
at a constant speed. This disc is connected to the linear motor by a thin rod. The events are recorded
with a Photron SA1.1 high speed camera at frame rates up to 20 kHz. Our main control parameter is
the Froude number, which is defined as the square of the impact speed U0, non-dimensionalized by
the disc radius R0, and the gravitational acceleration g:

Fr = U 2
0

gR0
. (1)

Two snapshots of the experiment are shown in Fig. 1. The left image shows the situation right
after impact, when the cavity is formed. A downward flow of air is required to fill in the space
that is created by the downward moving disc and the expanding cavity. On the right a later stage
in time is shown, some moments before the pinch-off. Here, there is a competition between the
downward moving disc and the expanding part of the cavity on the one hand, and the collapsing part,
i.e., the region above the maximum, on the other. The former tends to increase the cavity volume
below the pinch-off depth (dashed line), whereas the latter decreases it. We always observe that
close to pinch-off, the violent collapse is dominant and the bubble volume below the pinch-off point
decreases, pushing air out through the neck. As the neck becomes thinner towards the moment of
pinch-off, the gas speed increases rapidly. The remaining part of this chapter is devoted to measuring
this air flow and comparing the results with numerical simulations.
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(a) (b) (c)

FIG. 2. (a) The volume of the cavity below the pinch-off depth (dashed line) is determined by tracing the boundary (red) and
assuming symmetry around the central axis. (b) The volume decreases as the neck becomes thinner until the cavity closes.
(c) After pinch-off a downward jet enters into the entrapped bubble, and the bubble shows volume-oscillations and cavity
ripples.

III. GEOMETRIC APPROACH

The first way in which we will quantify the air flow through the neck of the cavity is an indirect
one: We will measure the time evolution of the volume of the cavity below the pinch-off point and
calculate its first derivative with respect to time. This will be identified with the air flow rate through
the neck. This involves the following assumptions: (i) The air flow is incompressible, (ii) the air
flow profile is one-dimensional (i.e., a plug flow) and only directed in the vertical direction, and
(iii) the cavity shape is axisymmetric. The first assumption is only violated close to the moment
of pinch-off, when the air speed diverges. Compressibility effects at this stage are investigated in
Ref. 7 and its effects will be discussed in Sec. V. We will justify the second assumption partially by
visualizing the air flow inside the cavity and measuring the velocity directly; in addition it is known
from two-fluid boundary-integral simulations that the flow profile is very close to one dimensional.8

The third assumption only breaks down in the neck-region very close to pinch-off because very small
disturbances are remembered during the collapse.9–15 Here, this effect is only relevant locally on a
very small scale and can therefore be neglected on the large scale where we measure the volume.

A. Cavity volume

We measure the volume of the cavity below the pinch-off depth as illustrated in Fig. 2: By
tracing the contour for every frame in a movie and invoking axisymmetry we are able to determine
the volume of the bubble below the pinch-off depth as a function of time. Such a measurement for a
disc with radius 20 mm and impact speed of 1 m/s is shown in Fig. 3. In the beginning (t ! 0.022 s)
the volume is increasing (positive slope), which means that the air at the pinch-off depth is flowing
downwards. At the maximum (t ≈ 0.022 s) the flux through the pinch-off depth is zero, indicating
a local stagnation of the flow at this depth. We will study this stagnation point later, in Sec. V. After
this maximum the volume starts to decrease and the flow is directed upwards. This continues until
the moment of pinch-off which is indicated by the vertical dashed line in Fig. 3. A linear fit (solid
line, green) reveals that the flow rate is approximately constant towards the pinch-off moment. More
precisely, the linear fit is the time rate of change of the cavity volume at pinch-off, which is equal
to minus the maximum value of volume-based flow rate, !V ≡ −dV/dt , under the assumption of
incompressibility of the air. We will use this maximum flow rate !V to compare the flow rates
through the neck at different Froude numbers.

After the pinch-off there is a clear oscillation of the volume together with a slow apparent
growth of the bubble. The growth is caused by the liquid jet that is entering the bubble (Fig. 2(c)),
as the amount of air is fixed after the pinch-off. Since our focus is on the behavior before pinch-off,
we chose not to correct the bubble volume in the image analysis by subtracting this jet volume.
Also, making such a correction would be complicated by the fact that the jet is imaged through
the refracting, curved interface of the air bubble. Nevertheless, we determined the frequency of



032104-4 Peters et al. Phys. Fluids 25, 032104 (2013)

FIG. 3. Volume below the pinch-off depth as a function of time (dots (blue)), determined from an experiment with Fr = 5.1.
The vertical dashed line indicates the moment of pinch-off. Close to pinch-off the volume decrease is well approximated by
a linear fit (straight solid line (green)), after pinch-off the bubble oscillates with its resonance frequency (solid curve (red):
fit with sine function). The steady growth in volume after the pinch-off is caused by the jet entering the bubble, which in our
data analysis is not subtracted from the measured bubble volume, see main text.

the oscillation by fitting a sine function (solid curve in inset (red)) after correcting for the slightly
positive slope. For the conditions of Fig. 3 the measured frequency is 143 Hz, which is close to
the expected resonance—or Minnaert—frequency16 of 138 Hz.17 This agreement was also noted by
Ref. 18 for the impact of freely falling objects in water.

B. Air flow rate

A characteristic quantity concerning the gas dynamics in a collapsing cavity is the air flow
rate, defined as the volume of air that is being displaced per unit time close to pinch-off. From
Fig. 3 we infer that in approach of the pinch-off point this flow rate becomes constant and can be
determined as the maximum slope of the volume as a function of time (linear fit (green), Fig. 3),
i.e., the air flow rate through the neck equals the rate of change of the volume of the cavity below
the pinch-off depth, of course under the assumption that the gas flow remains in the incompressible
limit. We subsequently non-dimensionalize this air flow rate !V ≡ −dV/dt with the disc radius and
the impact speed, namely, !∗

V ≡ !V /(R2
0U0), where the asterisk denotes a dimensionless value. We

determined the flow rate for a number of different disc radii (ranging from 15 to 30 mm) and impact
speeds (0.45–1.30 m/s), the results of which are shown in Fig. 4 where we plot the dimensionless flow
rate !∗

V versus the Froude number Fr on a double-logarithmic scale (black dots). The experimental
range is limited by the appearance of a surface seal at high impact speeds, where the crown splash
is pulled inwards due to the air flow induced by the disc and closes the cavity at the surface. This
surface seal usually has a significant influence on the cavity shape and dynamics19 as well as the gas
flow rate in the neck, so all of the experiments reported here are without surface seal. Although the
experimental data follow an apparent power-law, extending the experimental range in Fr with our
boundary integral code8, 19 reveals that the results do not lie on a straight line (Fig. 4, open diamonds
(red)). This suggests that there does not exist a pure power-law.

1. An analytical argument

Using the assumption that the cavity expansion and collapse take place in horizontal non-
interacting layers of fluid—an assumption that was successfully used in Bergmann et al.19—we will
now shed light onto the behavior of the air flow rate through the neck as a function of the Froude
number. We will provide an analytical argument in this subsection, which we work out in detail
based on the model of Bergmann et al.19 in Appendix A. For convenience from hereon we will take
the z to mean the depth below the undisturbed water surface, i.e., z = 0 at the latter and increases
with depth.
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FIG. 4. Flow rate calculated from the volume changes as a function of the Froude number in a double logarithmic plot. Both
the experimental data (black dots) and the numerical data (diamonds (red)) correspond to the maximum value of !∗

V . The
range of experimental data is limited to Fr ≈ 12 by the appearance of a surface seal. The solid curve (blue) represents the fit
!∗

V = 1.23Fr1/2 + 1.01.

The quantity that we aim to calculate is the time rate of change of the cavity volume V̇ = dV/dt ,
i.e.,

!V ≡ −dV
dt

= − d
dt

∫ zdisc

zc

π [r (z, t)]2dz , (2)

where it is understood that the expression needs to be evaluated at the pinch-off time. Here, r(z, t) is
the cavity profile, zdisc(t) is the vertical position of the disc, and zc is the pinch-off depth. We obtain

!V = −
∫ zdisc

zc

2π r (z, t) ṙ(z, t)dz − π R2
0U0 , (3)

where the last term is due to the downward moving disc and ṙ ≡ ∂r/∂t denotes the radial velocity
of the cavity wall.

To approximate the integral in Eq. (3) we subdivide the expanding and collapsing cavity—at
times close to the collapse—into regions that we can express analytically using the model provided
by Bergmann et al.19 This is done in Appendix A and leads to

!V = R2
0U0

[
A Fr1/2 + B

]
or !∗

V = A Fr1/2 + B, (4)

with A and B numerical constants. To test this relation we extended the experiments of Fig. 4
by performing boundary integral numerical simulations in order to cover a wide range of Froude
numbers.20 The obtained results are added to Fig. 4 using open diamonds (red). There is a good
agreement with the experimental data, and the non-constant slope is clearly visible. A fit to the
simulation data confirms Eq. (4) and gives A ≈ 1.23 and B ≈ 1.01.

IV. FLOW VISUALIZATION

In this section we perform a direct determination of the air flow velocity by seeding the air
with smoke and illuminating with a laser sheet (see also Gekle et al.7), the results of which we
will subsequently compare to the velocities that were determined indirectly and independently using
volume measurements. We will first describe the method and results of the flow visualization that
we used to measure the air flow inside the cavity. Before doing the impact experiment we fill
the atmosphere above the water surface with small smoke particles. When subsequently the disc is
moved down through the water surface, the smoke is dragged along, and fills the cavity created below
the surface. We illuminate a thin sheet of the smoke using a 1500 mW diode laser line generator
(Magnum II) and record the experiment at a recording rate up to 15 kHz by placing the high speed
camera perpendicular to the laser sheet (Fig. 5). The smoke consists of small glycerine-based droplets
(diameter ∼3 µm), produced by a commercially available smoke machine built for light effects in
discotheques. A simple analysis shows that the particles are light enough to neglect all inertial effects
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FIG. 5. A schematic view of the setup. A laser sheet shines from above on the disc, illuminating the interior of the cavity
after the disc has impacted the water surface. We insert smoke in the top part of the container and when the linear motor pulls
the disc through the water surface at a constant speed, the smoke is entrained into the cavity.

at least in the range of accelerations that we can measure experimentally: At a velocity difference of
10 m/s the Reynolds number is ∼2, meaning that we can assume Stokes drag. Knowing the force on
the particle as a function of the velocity difference and the mass of the particles, we can calculate
the movement of the droplets in an accelerating flow. We find that the particles follow the flow up to
25 m/s with a velocity lag less than 2%.

A. Correlation technique

We determine the speed of the air in the neck by applying an image correlation velocimetry
(ICV) technique.21 ICV differs from Particle Image Velocimetry (PIV) in the sense that we do not
resolve discrete particles in our images, but we correlate smoke patterns instead of smoke particles.
Figure 6 shows the cavity with the illuminated smoke as an overlay, where the smoke is lightened
(colored orange) artificially for clarity. The actual measurements are done on a closer view of the
cavity. The correlation is performed on a square correlation window, indicated by the light-bordered
square (yellow). The width of the correlation window is 160 pixels, corresponding to 8.8 mm. In
the latest stages we switch to a correlation window of 96 pixels (5.3 mm) wide, anticipating for
the smaller neck radius. The measurements are insensitive to small changes in the shape, size, or
position of the correlation window. The size of the window is optimized for quality of the cross
correlation.

To improve the ICV analysis we used an image subtraction technique that we describe in
Appendix B. A subtraction technique similar to the one that we use here has been used previously
for double-frame PIV images,22 where it was found that if the displacement of the particles is too
small between a pair of images, the displacement peak in the correlation is biased. This bias is
related to the particle size in pixels and the displacement in pixels. In our case this length scale does
not exist because we do not resolve separate smoke particles in our experimental setup. Instead of
calculating the expected bias, we identify biased values by their departure from the global trend
of the data (Fig. 7, inset). As a remedy for the bias, we artificially increase the displacement by
skipping frames. The smaller the velocity, the larger the number of frames we skip. In addition to
this we note that the bias is less pronounced compared to the case in Ref. 22 because we construct
the image pair from three images instead of two.

The biased data and other spurious data are removed by making an objective selection based on
the peak-to-peak ratio of the correlation. This ratio is defined as the ratio between the two highest
peaks in the correlation: λ = p1/p2. The inset of Figure 7 shows the effectiveness of this selection
method. We set λ to values between 3.5 and 5.0, depending on the specific measurement, so that
almost all spurious data are removed. Taking higher values for λ removes too many valid data points;
lower values allow for too many biased data points.
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FIG. 6. A snapshot of the cavity with an overlay of a recording of the illuminated smoke. The smoke particles are artificially
lightened (orange) in this figure. The size and position of the employed correlation window is indicated by the light-bordered
square (yellow).

In Fig. 7 we compare the air speed that we measured directly using smoke particles with the
air velocity that we calculated indirectly using the change in volume of the cavity, as discussed in
Sec. III A. The air speeds are plotted versus the neck radius R(t) at pinch-off depth instead of time;
time increases from right to left in the figure, i.e., towards smaller values of R. The solid line (blue)
is obtained using a polynomial (smoothing) fit to the volume-time data of Fig. 3, determining the
flow rate !V (t) from the time derivative of this fit [Eq. (2)], and finally dividing by πR(t)2 to obtain

FIG. 7. The vertical air velocity through the neck as a function of the neck radius R, measured in an experiment with
Fr = 5.1 in three different ways: (i) Directly, using smoke particles (diamonds), (ii) indirectly, using a smoothing polynomial
fit to bubble volume of Fig. 3 (solid line (blue)), and (iii) indirectly, using a constant flow rate approximation, determined at
pinch-off (cf. Fig. 3, thick dashed line). The different gray scales (colors) of the diamonds correspond to different numbers
of frames that are skipped in the cross-correlation (see main text). The inset shows the same vertical velocity data measured
using method (i) for two different values for the peak-to-peak ratio λ: For λ > 1.5 (gray dots (orange)) we find strongly
biased data, which are eliminated using a higher threshold (λ > 3.5, black dots).
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the velocity. We find a very good agreement between the direct (smoke) and the indirect (volume)
measurements.

Finally, the black thick dashed line in Fig. 7 is obtained by setting the flow rate to a constant
value, namely, to that corresponding to the time derivative of the volume curve just before pinch off
(the linear fit (green) in Fig. 3). We observe that at early times (large R) there are large deviations
from the other two datasets. This stands to reason, since at these times we are still far away from the
pinch-off moment, and the gas flow rate in the neck has not yet become (approximately) constant.
Close to pinch off however, for R/R0 ! 0.4, we find that the constant flow rate approximation and
the smoothing fit both provide the same air speed.

V. THE ROLE OF COMPRESSIBILITY

The fact that the air flow rate becomes constant together with the surface area of the neck
becoming vanishingly small suggests that the velocity in the neck diverges towards pinch off.
However, as was mentioned in the Introduction, a real singularity of the air flow velocity is prevented
by compressibility effects. In a previous publication we presented a directly visible effect of the
compressed gas flow, namely, the upwards motion of the position of the minimum neck radius.7 This
upwards motion was seen both in experiments and in simulations that take the compressibility into
account, and is absent in simulations that neglect compressibility. In the same paper we reported
that, next to this upward motion of the neck, the extremely fast airflow affects the smoothness of
the neck. Especially this last effect is important, since it is in contradiction with the assumptions in
theoretical pinch-off models where the neck is assumed to be slender.23, 24

The question that we intend to answer in the present section is how the effects of compressibility
show up in the measurement of the cavity volume and the air flow rate that can be deduced from
it, as was presented in Sec. III of this work. More specifically we will investigate the position of
the stagnation point of the flow in the cavity (see below) and the air flow rate towards the pinch-off
moment. Following the method we used in Ref. 7, we will compare our experimental results with
three different types of boundary integral simulations: (i) a single phase version, in which only the
water phase is resolved, (ii) a two-phase version where both the liquid and the gas flow are resolved
as incompressible inviscid media, and (iii) a compressible gas version where the compressibility
of the gas phase is taken into account by substituting the incompressible axisymmetric gas phase
equations by one-dimensional compressible Euler equations at that moment during the collapse
when compressibility effects start to become significant. More details about the numerical method
can be found in Refs. 7 and 8.

A. Stagnation point

Just above the disc the air must move downwards at approximately the same speed as the
disc, whereas simultaneously, towards closure, the air in the neck is moving upwards. This implies
that somewhere in between there will be a stagnation point. We will estimate the location of this
stagnation point as follows: The first step is to extend the analysis of Sec. III, where we tracked
the volume below the pinch-off depth in time, to any depth z below the pinch-off point. For
every depth z this will provide us with a curve similar to that in Fig. 3 and by determining the time
coordinate of the maximum we find the time tstag at which the averaged25 flow rate (∼V̇ ) at that depth
z ≡ zstag is zero. This point we then interpret as the location of the stagnation point zstag(tstag), which
involves the assumption that close to the pinch-off moment the flow in the neck region becomes
predominantly homogeneous and vertical. In Fig. 8 we plot the measured location of zstag for three
different realizations of an experiment with a radius of 2 cm and an impact speed of 1 m/s. When
we compare the experiments to a two-phase incompressible boundary integral simulation [type (ii)]
(dashed line (green) in Fig. 8), we find a considerable discrepancy between the two for small values
of the neck radius R. If we however use the compressible version of the simulation [type (iii)], the
agreement becomes much better (solid line (red) in Fig. 8, see also Gekle et al.7), confirming the
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FIG. 8. The location of the stagnation point zstag with respect to that of the pinch-off point zc as a function of the neck radius
R. Note that when that the stagnation point lies below the pinch-off point, zc − zstag is negative. Time increases from right to
left (decreasing R). The dots are experimental data, obtained by volume measurements of four different experiments, where
each gray scale corresponds to a different experiment. All experiments were performed with disc radius R0 = 2.0 cm and
impact speed U0 = 1.0 m/s, i.e., Fr = 5.1. The dashed line (green) is the result of a two-phase boundary integral simulation
without taking compressibility into account [type (ii)]. The solid line (red) is obtained by a two-phase boundary integral
simulation which includes a compressible gas phase [type (iii)]. Oscillations in the solid line are a numerical artifact due to
wave reflections in the compressible domain, see Gekle et al.8 for details.

importance of compressibility in this limit. Note that experiments and both simulations do converge
for larger values of R, where compressibility effects play no role.

The agreement is not perfect, however, which can partly be traced back to the technical difficulty
of obtaining reliable values for zstag from the experiment (which reflects in the large spread between
the three different realizations) and partly to the fact that its determination neglects compressibility
in a subtle way: Although in the experimental data compressibility is of course necessarily reflected
in the shape of the cavity, the method of obtaining the air flow rate from it (namely, by determining
the time rate of change of the cavity volume) neglects compressibility in the air phase. A difference
with the actual location of the stagnation point is therefore expected for high gas velocities (i.e.,
small neck radii).

B. Air flow rate

As explained in the introduction of this section, we can compare the air flow rate in the neck in
experiment and simulation directly, by comparing the experimental velocities (cf. Sec. IV) as was
done in Ref. 7, but also indirectly, by using the volume analysis of Sec. III both in experiment and
simulation. This second method, the results of which will be presented now, enables us to distinguish
the effect the compressibility of the air has on the cavity wall (which is included in the analysis)
from the pure compressibility of the flow (which is not included).

To do so, it is convenient to from now on distinguish the true air flow rate from the derived air
flow rate, i.e., the one obtained from the time rate of change of the cavity volume. In Fig. 9(a) we
plot the non-dimensionalized experimental derived air flow rate in the neck,

!∗
V ≡ !V

R2
0U0

≡ − 1
R2

0U0

dV
dt

, (5)

as a function of the dimensionless neck radius R(t)/R0 (black dots), again for Fr = 5.1. Repeating
the experiment results in an uncertainty in the magnitude of !∗

V (corresponding to the spread of the
experimental data in Fig. 4), but the behavior as a function of time is always the same: The derived
air flow rate in the neck reaches a maximum, and approaches a finite value towards the moment
of pinch-off. We compare this result with those of the three different types of boundary integral
simulations:



032104-10 Peters et al. Phys. Fluids 25, 032104 (2013)

FIG. 9. (a) The dimensionless derived air flow rate !∗
V = !V /(R2

0U0) (from the time rate of change of the cavity volume)
as a function of the dimensionless neck radius R/R0 in an impact experiment with disc radius R0 = 2 cm and impact speed
U0 = 1 m/s (Fr = 5.1). The black dots represent experimental data. The dashed-dotted line (red) is obtained using a one-phase
simulation [type(i)], which excludes the air phase. The solid line (green) is a two-phase boundary integral simulation without
compressibility [type (ii)]. Finally, the dashed line (blue) is the result of a two-phase boundary integral simulation which
includes a compressible gas phase [type (iii)]. (b) Comparison of the dimensionless derived air flow rate !∗

V [dashed line
(blue); the same curve as in (a)] and the true air flow rate !*, both plotted versus R/R0. The two curves diverge from each
other below R/R0 ≈ 0.2.

The one-phase code [type (i)] predicts a steadily increasing derived air flow rate, which seems
to level off to a constant value towards pinch off (R/R0 → 0). This is the dashed-dotted line (red) in
Fig. 9(a).

The two-phase incompressible version [type (ii)] predicts a maximum at a location which is
reasonably comparable to the experimental one, but after that decreases toward zero at the pinch-off
moment (the solid curve (green) in Fig. 9(a)). Since both phases are incompressible, this stands to
reason: The pressure in the cavity rises instantly because of the divergence of the air velocity ug in
the shrinking neck. This pressure decelerates the cavity wall, which in turn decreases the derived
air flow rate, which should go to zero in the R/R0 → 0-limit: In the context of incompressible flow,
a finite derived air flow rate would result in an infinite air velocity in the neck and consequently
an infinite pressure within the cavity. Here it is good to note that for this two-phase incompressible
code the derived and true air flow rates are actually identical, due to the incompressibility of the air
phase.

The two-phase compressible simulation [type (iii)] also predicts a maximum for !∗
V , at a location

similar to the two-phase incompressible code and the experiment, but then decreases to a finite value
for R/R0 → 0, just like the experiment. Clearly, and in contrast with the other two versions of the
simulation which behave poorly, the agreement with the experiments is qualitatively very good and
quantitatively satisfactory. All three types of simulations and the experiments all converge for larger
R/R0 ≈ O(1), which is expected since airflow effects (let alone compressibility of the air phase)
are small or even negligible in that regime.

The final question that we want to address is the difference between the true air flow rate (which
incorporates all compressibility effects) and the derived one (which only includes the effects of
compressibility on the cavity wall). In experiment it is impossible to obtain the first quantity at the
required precision, because its determination includes measurement errors in both air velocity ug

and neck radius R. The two-phase compressible simulation technique however does offer a way to
look at this difference: In Fig. 9(b) we compare the derived air flow rate !∗

V (the same curve as the
dashed one (blue) in Fig. 9(a)) to the true air flow rate !* (solid curve (orange)), which is calculated
from ug(t) and R(t) as

!∗ ≡ !

R2
0U0

= 1
R2

0U0
πug(t)R(t)2 , (6)

both as a function of the dimensionless cavity radius R(t)/R0. Clearly the two curves coincide
above R/R0 ≈ 0.2, but start to depart from one another below this value, indicating that here the
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compressibility of the air itself becomes significant, in good agreement with what we concluded
from the previous plot (Fig. 9(a)). We observe that the true air flow rate goes to zero for R/R0 → 0
(and incidentally not quite unlike the two-phase incompressible curve (solid (green)) in Fig. 9(a)).
This is of course what should happen, since the gas velocity in the neck needs to remain finite at all
times. The difference between the two curves is related to the rate at which the gas in the cavity is
compressed.

VI. CONCLUSIONS

We have measured the air flow inside the neck of a collapsing cavity that was created by the
impact of a circular disc on a water surface. More specifically we have performed and compared
two types of experiments: First, we did indirect measurements, using the time rate of change of the
cavity volume as a measure for the air flow rate in the neck, thereby neglecting compressibility of
the air inside the cavity. Second, we performed direct measurements of the velocity in the neck of
the cavity using image correlation velocimetry. Numerical boundary integral simulations of three
different types have been used to evaluate and discuss our experimental findings.

For the complete experimentally available range of Froude numbers we showed that there is
a very good agreement between the indirectly measured air flow rate and the boundary integral
simulations. With the simulations we were able to extend the range of experimentally attainable
Froude numbers, which revealed that the air flow rate is not a pure power-law of the Froude number.
We formulated an analytical argument revealing that the dimensionless air flow rate should scale
as AFr1/2 + B. Such a scaling compares well with experiments and simulations for A ≈ 1.23 and
B ≈ 1.01.

By performing careful image correlation velocimetry experiments with a smoke-filled cavity
we have been able to directly measure the air flow for relatively low air speeds, corresponding to
R/R0 ≥ 0.3. In this region we found excellent agreement with the gas velocities that we calculated
from the indirect measurements of the air flow rate and the neck radius R(t).

Due to the very high air speed close to the moment of pinch-off (R/R0 ≤ 0.2) compressibility of
the air cannot be neglected anymore. We have demonstrated this by comparing experimental results
to three types of numerical simulations: (i) one-phase boundary integral simulations, (ii) two-phase
boundary integral simulations with an incompressible gas-phase, and (iii) a compressible gas version
of the second type of simulations that include the gas phase as a compressible fluid. We analyze the
time evolution of both the location of the stagnation point in the gas flow and the derived air flow
rate and explain our experimental observations in terms of the three types of simulations. The main
conclusion is that the behavior that we observe in the experiments can only be reproduced by the
simulations if compressibility is taken into account.

ACKNOWLEDGMENTS

We acknowledge the Netherlands Organisation for Scientific Research (NWO) for financial
support through the Spinoza program.

APPENDIX A: DERIVATION OF THE SCALING LAW FOR !∗
V

In this appendix we derive Eq. (4), the main result of Sec. III B, starting from the description
of the cavity proposed in Ref. 19. The starting point is the two-dimensional Rayleigh equation for
the cavity wall r(z, t), which originates from integrating the Euler equations in uncoupled horizontal
layers of flow from some far away point R∞ to the cavity wall:

log (r/R∞)
d
dt

(rṙ ) + 1
2 ṙ2 = gz (A1)

in which ṙ = ∂r/∂t and g is the acceleration of gravity.
This equation is solved in two different limits to describe the different regions in Fig. 10. The

first one is to describe regions A and B, taking for every depth z the moment tM(z) of maximum
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FIG. 10. For the derivation in Appendix A, the cavity close to the pinch-off moment needs be divided into four regions: The
expansion region (A), between the location of the disc zdisc and the location of the maximum zM, where the cavity expands
against hydrostatic pressure; the contraction region (B), between zM and the point zcross where the cavity reaches the disc
radius again where the hydrostatic pressure approximation [Eq. (A2)] is matched to the inertial approximation [Eq. (A4)];
the collapse region (C) between zcross and z∗, characterized by continuity; and the self-similarity region (D), between z∗ and
the pinch off location zc, which is in addition characterized by a coupling between the vertical and horizontal coordinates.

expansion as a reference point. With r(tM) = RM(z), ṙ (tM ) = 0, we can neglect the second term in
Eq. (A1) and replace the slowly varying logarithm in the first term by a constant26β ≡ log (RM/R∞)27

and solve

r (z, t)2 = RM (z)2 − gz
β

(t − tM (z))2. (A2)

In Ref. 19 it was shown that

tM (z) = z
U0

+ αexpaβexpa
R0U0

gz
, (A3)

in which the first term represents the time span needed to arrive at depth z and the second the amount
of time to expand to the maximum radius. Here αexpaβexpa is a constant.28

The second approximate solution corresponds to the small R limit in the collapse regions C and
D of Fig. 10, in which both the driving pressure gz and the inertial term ṙ2/2 can be considered
small when |log (r/R∞)| * 1/2. This then leads to d

dt (rṙ) = 0 which is readily solved to give

r (z, t)2 = 2αctra R0U0 (tcoll(z) − t) , (A4)

in which αctra is a constant and tcoll(z) is the (virtual) closure time of the cavity at depth z. At any
depth z the approximate solutions are tied together at the maximum (where a solution Eq. (A2) with
β = βexpa is matched to a solution with β = βctra) and at the moment tcross(z) when r(z, t) = R0

again. Here, the solution Eq. (A2) with β = βctra is matched to Eq. (A4). More details can be found
in Ref. 19.

The quantity we want to calculate is Eq. (3), which contains the time derivatives of
Eqs. (A2) and (A4), which are

d
dt

(
r (z, t)2) = −2

gz
β

(t − tM (z)) (regions A and B),

(A5)
d
dt

(
r (z, t)2) = −2αctra R0U0 (regions C and D),
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which subsequently need to be evaluated at the moment of pinch-off t = tc, for which it was derived
in Ref. 19 that it is independent of the impact speed: tc = C2

√
R0/g.29 Inserting this expression

together with Eq. (A3) into the first Eq. (A5) gives

d
dt

(
r (z, tc)2) =

−2
gz
β

(

C2

√
R0

g
− z

U0
− αexpaβexpa

R0U0

gz

)

. (A6)

Finally, we need to integrate the second Eqs. (A5) and (A6) over z between zdisc and zc. This is a
straightforward calculation which gives the following lengthy result:

∫ zdisc

zc

d
dt

(
r (z, tc)2) dz =

− C2

βexpa

√
R0g

(
z2

disc − z2
M

)
+ 2

3βexpa

g
U0

(
z3

disc − z3
M

)
+

2αexpa R0U0(zdisc − zM ) − C2

βctra

√
R0g

(
z2

M − z2
cross

)
+

2
3βctra

g
U0

(
z3

M − z3
cross

)
+ 2

αexpaβexpa

βctra
R0U0(zM − zcross) −

2αctra R0U0(zcross − z∗) − 2αctra R0U0(z∗ − zc). (A7)

We now use that all length scales zdisc, zM, zcross, and z∗ scale as R0Fr1/2, except for the difference
(z∗ − zc), which due to the self-similarity in the neck radius scales as R0. This means that the above
Eq. (A7) has the following form:

∫ zdisc

zc

d
dt

(
r (z, tc)2) dz =

−κ1

√
R0g R2

0Fr + κ2
g

U0
R3

0Fr3/2 + κ3 R2
0U0Fr1/2 − κ4 R2

0U0, (A8)

in which κ1–κ4 are positive numerical constants, which depend on the α’s, β’s, and the proportionality
constants in the scaling laws for the length scales zdisc, zM, zcross, z∗, and (z∗ − zc). By writing
g = U 2

0 R−1
0 Fr−1 in the first two terms we finally obtain

∫ zdisc

zc

d
dt

(
r (z, tc)2) dz =

(−κ1 + κ2 + κ3) R2
0U0 Fr1/2 − κ4 R2

0U0. (A9)

If we now insert the above result in Eq. (3) we obtain

!V = −
∫ zdisc

zc

2π r (z, t) ṙ(z, t, )dz − π R2
0U0

= π (κ1 − κ2 − κ3) R2
0U0 Fr1/2 + π (κ4 − 1)R2

0U0 (A10)

which then leads to

!∗
V ≡ !V

R2
0U0

= A Fr1/2 + B , (A11)

with A ≡ π (κ1 − κ2 − κ3) and B ≡ π (κ4 − 1).

APPENDIX B: IMAGE SUBTRACTION TECHNIQUE

Mainly due to reflections from and refraction at the free surface, there are structures visible
in the correlation window that move slowly compared to the typical gas velocities that we want to
measure. A correlation between two unprocessed images gives a strong correlation peak close to zero
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because these structures are dominating the image, and thereupon also the cross-correlation. Standard
background subtraction is not able to remove these features since, because of their refractive and
reflective nature, they appear and disappear at unpredictable instances in time and are not stationary.
Instead we use the difference between subsequent images in the following way: We start with three
images In, In + 1, and In + 2. After applying a low pass filter we create two new images by mutual
subtraction of the original three images: Jn = In + 1 − In and Jn + 1 = In + 2 − In + 1. We then apply a
min-max filter30 to these images Jn and Jn + 1, followed by the cross correlation of Jn and Jn + 1. On
the result of the correlation we apply a multiple peak detection to find the highest peak p1 and the
second-highest peak p2. We determine the position of the highest peak with sub-pixel accuracy by a
gaussian fitting routine.
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