Find me on: arXiv – Google Scholar – ORCID
[32] Bubble collapse near porous plates
E.D. Andrews, D. Fernández Rivas, and I.R. Peters (2022) [arXiv]
[31] Modeling bubble collapse anisotropy in complex geometries
E.D. Andrews and I.R. Peters, Phys. Rev. Fluids 7, 123601 (2022) [pdf]
[30] Lasting effects of discontinuous shear thickening in cornstarch suspensions upon flow cessation
J.H. Cho, A.H. Griese, I.R. Peters, and I. Bischofberger, Phys. Rev. Fluids 7, 063302 (2022) [pdf]
[29] Collision of Dynamic Jamming Fronts in a Dense Suspension
O. Rømke, I.R. Peters, and R.J. Hearst, Phys. Rev. Fluids 6, 103301 (2021) [pdf]
[28] Characterizing the surface texture of a dense suspension undergoing dynamic jamming
O. Rømke, I.R. Peters, and R.J. Hearst, Exp. Fluids 62, 226 (2021) [pdf]
[27] Getting jammed in all directions: Dynamic shear jamming around a cylinder towed through a dense suspension
O. Rømke, I.R. Peters, and R.J. Hearst, Phys. Rev. Fluids 6, 063301 (2021) [pdf]
[26] Cavity collapse near slot geometries
E.D. Andrews, D. Fernández Rivas, and I.R. Peters, J. Fluid Mech. 901, A29 (2020) [doi] [arXiv]
[25] Jet direction in bubble collapse within rectangular and triangular channels
L. Molefe and I.R. Peters, Phys. Rev. E 100, 063105 (2019) [pdf]
[24] Bubble collapse and jet formation in corner geometries
Y. Tagawa and I.R. Peters, Phys. Rev. Fluids 3, 081601 (2018) [pdf]
[23] Shear fronts in shear-thickening suspensions
E. Han, M. Wyart, I.R. Peters, and H.M. Jaeger, Phys. Rev. Fluids 3, 073301 (2018) [pdf]
[22] 3D calcite heterostructures for dynamic and deformable mineralized matrices
J. Yi, Y. Wang, Y. Jiang, I.W. Jung, W. Liu, V. De Andrade, R. Xu, R. Parameswaran, I.R. Peters, R. Divan, X. Xiao, T. Sun, Y. Lee, W.I. Park, and B. Tian, Nature Comm. 8, 509 (2017) [doi]
[21] Dynamic shear jamming under extension in dense granular suspensions
S. Majumdar, I.R. Peters, E. Han, and H.M. Jaeger, Phys. Rev. E 95, 012603 (2017) [pdf]
[20] High-speed ultrasound imaging in dense suspensions reveals impact-activated solidification due to dynamic shear jamming
E. Han, I.R. Peters, and H.M. Jaeger, Nature Comm. 7, 12243 (2016) [doi]
[19] Volume entrained in the wake of a disc intruding into an oil-water interface
I.R. Peters, M. Madonia, D. Lohse, and D. van der Meer, Phys. Rev. Fluids 1, 033901 (2016) [pdf]
[18] From splashing to bouncing: The influence of viscosity on the impact of suspension droplets on a solid surface
M.H. Klein Schaarsberg, I.R. Peters, M. Stern, K. Dodge, W.W. Zhang, and H.M. Jaeger, Phys. Rev. E 93, 062609 (2016) [pdf]
[17] Direct observation of dynamic shear jamming in dense suspensions
I.R. Peters, S. Majumdar, and H.M. Jaeger, Nature 532, 214-217 (2016) [doi / full text]
[16] Dynamic jamming of iceberg-choked fjords
I.R. Peters, J.M. Amundson, R. Cassotto, M. Fahnestock, K.N. Darnell, M. Truffer, and W.W. Zhang, Geophys. Res. Lett. 42 (2015) [pdf]
[15] Quasi-2D dynamic jamming in cornstarch suspensions: visualization and force measurements
I.R. Peters and H.M. Jaeger, Soft Matter 10, 6564 (2014) [pdf]
[14] Fast Imaging Technique to study Drop Impact Dynamics of Non-Newtonian Fluids
Q. Xu, I.R. Peters, S. Wilken, E. Brown, and H.M. Jaeger, J. Vis. Exp. 85, 51249 (2014) [pdf]
[13] Oscillating and star-shaped drops levitated by an airflow
W. Bouwhuis, K.G. Winkels, I.R. Peters, P. Brunet, D. van der Meer, and J.H. Snoeijer. Phys. Rev. E 88, 023017 (2013) [pdf]
[12] Splashing Onset in Dense Suspension Droplets
I.R. Peters, Q. Xu, and H.M. Jaeger, Phys. Rev. Lett. 111, 028301 (2013) [pdf]
[11] Splash wave and crown breakup after disc impact on a liquid surface
I.R. Peters, D. van der Meer, and J.M. Gordillo, J. Fluid Mech. 724, 553-580 (2013) [pdf]
[10] Air flow in a collapsing cavity
I.R. Peters, S. Gekle, D. Lohse, and D. van der Meer, Phys. Fluids 25, 032104 (2013) [pdf]
[9] Highly focused supersonic microjets: numerical simulations
I.R. Peters, Y. Tagawa, N. Oudalov, C. Sun, A. Prosperetti, D. Lohse, and D. van der Meer, J. Fluid Mech. 719, 587-605 (2013) [pdf]
[8] Maximal Air Bubble Entrainment at Liquid-Drop Impact
W. Bouwhuis, R.C.A. van der Veen, T. Tran, D.L. Keij, K.G. Winkels, I.R. Peters, D. van der Meer, C. Sun, J.H. Snoeijer, and D. Lohse, Phys. Rev. Lett. 109, 264501 (2012) [pdf]
[7] Highly focused supersonic microjets
Y. Tagawa, N. Oudalov, C.W. Visser, I.R. Peters, D. van der Meer, C. Sun, A. Prosperetti, and D. Lohse, Phys. Rev. X 2, 031002 (2012) [pdf]
[6] Collapse and pinch-off of a non-axisymmetric impact-created air cavity in water
O.R. Enríquez, I.R. Peters, S. Gekle, L.E. Schmidt, D. Lohse, and D. van der Meer, J. Fluid Mech. 701, 40-58 (2012) [pdf]
[5] Non-axisymmetric impact creates pineapple-shaped cavity
O.R. Enríquez, I.R. Peters, S. Gekle, L.E. Schmidt, D. van der Meer, and D. Lohse, Phys. Fluids 23, 091106 (2011) [pdf]
[4] Receding contact lines: from sliding drops to immersion lithography
K.G. Winkels, I.R. Peters, F. Evangelista, M. Riepen, A. Daerr, L. Limat, and J.H. Snoeijer, Eur. Phys. J. Special Topics 192, 195–205 (2011) [pdf]
[3] Collapse of non-axisymmetric cavities
O.R. Enríquez, I.R. Peters, S. Gekle, L.E. Schmidt, M. Versluis, D. van der Meer, and D. Lohse, Phys. Fluids 22, 091104 (2010) [pdf]
[2] Supersonic air flow due to solid-liquid impact
S. Gekle, I.R. Peters, J.M. Gordillo, D. van der Meer, and D. Lohse, Phys. Rev. Lett. 104, 024501 (2010) [pdf]
[1] Coexistence of Two Singularities in Dewetting Flows: Regularizing the Corner Tip
I.R. Peters, J.H. Snoeijer, A. Daerr, and L. Limat, Phys. Rev. Lett. 103, 114501 (2009) [pdf]